Azure OpenAI
API Keys, Paramsβ
api_key, api_base, api_version etc can be passed directly to litellm.completion - see here or set as litellm.api_key params see here
import os
os.environ["AZURE_API_KEY"] = "" # "my-azure-api-key"
os.environ["AZURE_API_BASE"] = "" # "https://example-endpoint.openai.azure.com"
os.environ["AZURE_API_VERSION"] = "" # "2023-05-15"
# optional
os.environ["AZURE_AD_TOKEN"] = ""
os.environ["AZURE_API_TYPE"] = ""
Usageβ
Completion - using .env variablesβ
from litellm import completion
## set ENV variables
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""
# azure call
response = completion(
    model = "azure/<your_deployment_name>", 
    messages = [{ "content": "Hello, how are you?","role": "user"}]
)
Completion - using api_key, api_base, api_versionβ
import litellm
# azure call
response = litellm.completion(
    model = "azure/<your deployment name>",             # model = azure/<your deployment name> 
    api_base = "",                                      # azure api base
    api_version = "",                                   # azure api version
    api_key = "",                                       # azure api key
    messages = [{"role": "user", "content": "good morning"}],
)
Completion - using azure_ad_token, api_base, api_versionβ
import litellm
# azure call
response = litellm.completion(
    model = "azure/<your deployment name>",             # model = azure/<your deployment name> 
    api_base = "",                                      # azure api base
    api_version = "",                                   # azure api version
    azure_ad_token="",                                  # azure_ad_token 
    messages = [{"role": "user", "content": "good morning"}],
)
Azure OpenAI Chat Completion Modelsβ
| Model Name | Function Call | 
|---|---|
| gpt-4o | completion('azure/<your deployment name>', messages) | 
| gpt-4 | completion('azure/<your deployment name>', messages) | 
| gpt-4-0314 | completion('azure/<your deployment name>', messages) | 
| gpt-4-0613 | completion('azure/<your deployment name>', messages) | 
| gpt-4-32k | completion('azure/<your deployment name>', messages) | 
| gpt-4-32k-0314 | completion('azure/<your deployment name>', messages) | 
| gpt-4-32k-0613 | completion('azure/<your deployment name>', messages) | 
| gpt-4-1106-preview | completion('azure/<your deployment name>', messages) | 
| gpt-4-0125-preview | completion('azure/<your deployment name>', messages) | 
| gpt-3.5-turbo | completion('azure/<your deployment name>', messages) | 
| gpt-3.5-turbo-0301 | completion('azure/<your deployment name>', messages) | 
| gpt-3.5-turbo-0613 | completion('azure/<your deployment name>', messages) | 
| gpt-3.5-turbo-16k | completion('azure/<your deployment name>', messages) | 
| gpt-3.5-turbo-16k-0613 | completion('azure/<your deployment name>', messages) | 
Azure OpenAI Vision Modelsβ
| Model Name | Function Call | 
|---|---|
| gpt-4-vision | completion(model="azure/<your deployment name>", messages=messages) | 
| gpt-4o | completion('azure/<your deployment name>', messages) | 
Usageβ
import os 
from litellm import completion
os.environ["AZURE_API_KEY"] = "your-api-key"
# azure call
response = completion(
    model = "azure/<your deployment name>", 
    messages=[
        {
            "role": "user",
            "content": [
                            {
                                "type": "text",
                                "text": "Whatβs in this image?"
                            },
                            {
                                "type": "image_url",
                                "image_url": {
                                "url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
                                }
                            }
                        ]
        }
    ],
)
Usage - with Azure Vision enhancementsβ
Note: Azure requires the base_url to be set with /extensions 
Example
base_url=https://gpt-4-vision-resource.openai.azure.com/openai/deployments/gpt-4-vision/extensions
# base_url="{azure_endpoint}/openai/deployments/{azure_deployment}/extensions"
Usage
import os 
from litellm import completion
os.environ["AZURE_API_KEY"] = "your-api-key"
# azure call
response = completion(
            model="azure/gpt-4-vision",
            timeout=5,
            messages=[
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": "Whats in this image?"},
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": "https://avatars.githubusercontent.com/u/29436595?v=4"
                            },
                        },
                    ],
                }
            ],
            base_url="https://gpt-4-vision-resource.openai.azure.com/openai/deployments/gpt-4-vision/extensions",
            api_key=os.getenv("AZURE_VISION_API_KEY"),
            enhancements={"ocr": {"enabled": True}, "grounding": {"enabled": True}},
            dataSources=[
                {
                    "type": "AzureComputerVision",
                    "parameters": {
                        "endpoint": "https://gpt-4-vision-enhancement.cognitiveservices.azure.com/",
                        "key": os.environ["AZURE_VISION_ENHANCE_KEY"],
                    },
                }
            ],
)
Azure Instruct Modelsβ
Use model="azure_text/<your-deployment>"
| Model Name | Function Call | 
|---|---|
| gpt-3.5-turbo-instruct | response = completion(model="azure_text/<your deployment name>", messages=messages) | 
| gpt-3.5-turbo-instruct-0914 | response = completion(model="azure_text/<your deployment name>", messages=messages) | 
import litellm
## set ENV variables
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""
response = litellm.completion(
    model="azure_text/<your-deployment-name",
    messages=[{"role": "user", "content": "What is the weather like in Boston?"}]
)
print(response)
Advancedβ
Azure API Load-Balancingβ
Use this if you're trying to load-balance across multiple Azure/OpenAI deployments.
Router prevents failed requests, by picking the deployment which is below rate-limit and has the least amount of tokens used. 
In production, Router connects to a Redis Cache to track usage across multiple deployments.
Quick Startβ
pip install litellm
from litellm import Router
model_list = [{ # list of model deployments 
    "model_name": "gpt-3.5-turbo", # openai model name 
    "litellm_params": { # params for litellm completion/embedding call 
        "model": "azure/chatgpt-v-2", 
        "api_key": os.getenv("AZURE_API_KEY"),
        "api_version": os.getenv("AZURE_API_VERSION"),
        "api_base": os.getenv("AZURE_API_BASE")
    },
    "tpm": 240000,
    "rpm": 1800
}, {
    "model_name": "gpt-3.5-turbo", # openai model name 
    "litellm_params": { # params for litellm completion/embedding call 
        "model": "azure/chatgpt-functioncalling", 
        "api_key": os.getenv("AZURE_API_KEY"),
        "api_version": os.getenv("AZURE_API_VERSION"),
        "api_base": os.getenv("AZURE_API_BASE")
    },
    "tpm": 240000,
    "rpm": 1800
}, {
    "model_name": "gpt-3.5-turbo", # openai model name 
    "litellm_params": { # params for litellm completion/embedding call 
        "model": "gpt-3.5-turbo", 
        "api_key": os.getenv("OPENAI_API_KEY"),
    },
    "tpm": 1000000,
    "rpm": 9000
}]
router = Router(model_list=model_list)
# openai.chat.completions.create replacement
response = router.completion(model="gpt-3.5-turbo", 
                messages=[{"role": "user", "content": "Hey, how's it going?"}]
print(response)
Redis Queueβ
router = Router(model_list=model_list, 
                redis_host=os.getenv("REDIS_HOST"), 
                redis_password=os.getenv("REDIS_PASSWORD"), 
                redis_port=os.getenv("REDIS_PORT"))
print(response)
Parallel Function callingβ
See a detailed walthrough of parallel function calling with litellm here
# set Azure env variables
import os
os.environ['AZURE_API_KEY'] = "" # litellm reads AZURE_API_KEY from .env and sends the request
os.environ['AZURE_API_BASE'] = "https://openai-gpt-4-test-v-1.openai.azure.com/"
os.environ['AZURE_API_VERSION'] = "2023-07-01-preview"
import litellm
import json
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
    """Get the current weather in a given location"""
    if "tokyo" in location.lower():
        return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
    elif "san francisco" in location.lower():
        return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
    elif "paris" in location.lower():
        return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
    else:
        return json.dumps({"location": location, "temperature": "unknown"})
## Step 1: send the conversation and available functions to the model
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
    {
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "Get the current weather in a given location",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and state, e.g. San Francisco, CA",
                    },
                    "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
                },
                "required": ["location"],
            },
        },
    }
]
response = litellm.completion(
    model="azure/chatgpt-functioncalling", # model = azure/<your-azure-deployment-name>
    messages=messages,
    tools=tools,
    tool_choice="auto",  # auto is default, but we'll be explicit
)
print("\nLLM Response1:\n", response)
response_message = response.choices[0].message
tool_calls = response.choices[0].message.tool_calls
print("\nTool Choice:\n", tool_calls)
Authentication with Azure Active Directory Tokens (Microsoft Entra ID)β
This is a walkthrough on how to use Azure Active Directory Tokens - Microsoft Entra ID to make litellm.completion() calls 
Step 1 - Download Azure CLI Installation instructons: https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
brew update && brew install azure-cli
Step 2 - Sign in using az
az login --output table
Step 3 - Generate azure ad token
az account get-access-token --resource https://cognitiveservices.azure.com
In this step you should see an accessToken generated
{
  "accessToken": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6IjlHbW55RlBraGMzaE91UjIybXZTdmduTG83WSIsImtpZCI6IjlHbW55RlBraGMzaE91UjIybXZTdmduTG83WSJ9",
  "expiresOn": "2023-11-14 15:50:46.000000",
  "expires_on": 1700005846,
  "subscription": "db38de1f-4bb3..",
  "tenant": "bdfd79b3-8401-47..",
  "tokenType": "Bearer"
}
Step 4 - Make litellm.completion call with Azure AD token
Set azure_ad_token = accessToken from step 3 or set os.environ['AZURE_AD_TOKEN']
response = litellm.completion(
    model = "azure/<your deployment name>",             # model = azure/<your deployment name> 
    api_base = "",                                      # azure api base
    api_version = "",                                   # azure api version
    azure_ad_token="",                                  # your accessToken from step 3 
    messages = [{"role": "user", "content": "good morning"}],
)